Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 183: 108351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041983

RESUMO

Plasmids have been a concern in the dissemination and evolution of antibiotic resistance in the environment. In this study, we investigated the total pool of plasmids (plasmidome) and its derived antibiotic resistance genes (ARGs) in different compartments of urban water systems (UWSs) in three European countries representing different antibiotic usage regimes. We applied a direct plasmidome approach using wet-lab methods to enrich circular DNA in the samples, followed by shotgun sequencing and in silico contig circularisation. We identified 9538 novel sequences in a total of 10,942 recovered circular plasmids. Of these, 66 were identified as conjugative, 1896 mobilisable and 8970 non-mobilisable plasmids. The UWSs' plasmidome was dominated by small plasmids (≤10 Kbp) representing a broad diversity of mobility (MOB) types and incompatibility (Inc) groups. A shared collection of plasmids from different countries was detected in all treatment compartments, and plasmids could be source-tracked in the UWSs. More than half of the ARGs-encoding plasmids carried mobility genes for mobilisation/conjugation. The richness and abundance of ARGs-encoding plasmids generally decreased with the flow, while we observed that non-mobilisable ARGs-harbouring plasmids maintained their abundance in the Spanish wastewater treatment plant. Overall, our work unravels that the UWS plasmidome is dominated by cryptic (i.e., non-mobilisable, non-typeable and previously unknown) plasmids. Considering that some of these plasmids carried ARGs, were prevalent across three countries and could persist throughout the UWSs compartments, these results should alarm and call for attention.


Assuntos
Antibacterianos , Água , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Plasmídeos
2.
Antibiotics (Basel) ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627682

RESUMO

Quorum quenching (QQ) is the inhibition of bacterial communication, i.e., quorum sensing (QS). QS is a key mechanism in regulating biofilm formation and phenotype in complex bacterial communities, such as those found within cariogenic biofilms. Whereas QQ approaches were shown to effectively reduce biomass, knowledge of their impact on the taxonomic composition of oral polymicrobial biofilms remains scarce. Here, we investigate the effect of the QQ lactonase Aii20J on biomass production and taxonomical composition of biofilms. We collected supragingival plaque samples from 10 caries-free and 10 caries-active children and cultured them to generate in vitro biofilms. We describe significant biomass reductions upon Aii20J exposure, as assessed by crystal violet assays. Taxonomical profiling using 16S rRNA gene amplicon sequencing revealed no significant changes in bacterial composition at the genus level. Interestingly, at the species level Aii20J-treatment increased the abundance of Streptococcus cristatus and Streptococcus salivarius. Both S. cristatus and S. salivarius express pH-buffering enzymes (arginine deiminase and urease, respectively) that catalyze ammonia production, thereby potentially raising local pH and counteracting the biofilm's cariogenic potential. Within the limitations of the study, our findings provide evidence of the biofilm-modulating ability of QQ and offer novel insights into alternative strategies to restore homeostasis within dysbiotic ecosystems.

3.
Environ Pollut ; 334: 122033, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348697

RESUMO

In this work, the novel N-damo (Nitrite dependent anaerobic methane oxidation) process was investigated at high biomass activities for its potential to remove simultaneously nitrite and methane, as well as selected antibiotics commonly found in sewage in trace amounts. For this purpose, two MBRs were operated at three high nitrite loading rates (NLRs), namely 76 ± 9.9, 161.5 ± 11.4 and 215.2 ± 24.2 mg N-NO⁻2 L-1 d-1, at long-term operation. The MBRs performance achieved a significantly high nitrite removal activity for an N-damo process (specific denitrifying activity of up to 540 mg N-NO⁻2 g-1 VSS d-1), even comparable to heterotrophic denitrification values. In this study, we have implemented a novel operational strategy that sets our work apart from previous studies with similar bioreactors. Specifically, we have introduced Cerium as a trace element in the feeding medium, which serves as a key differentiating factor. It allowed maintaining a stable reactor operation at high NLRs. Microbial community composition evidenced that both MBRs were dominated with N-damo bacteria (67-87% relative abundance in period III and I, respectively). However, a decrease in functional N-damo bacteria (Candidatus Methylomirabilis) abundance was observed during the increase in biomass activity and concentration, concomitantly with an increase of the other minor families (Hypomicrobiaceae and Xanthobacteraceae). Most of the selected antibiotics showed high biotransformation such as sulfamethoxazole, trimethoprim, cefalexin and azithromycin, whereas others such as roxithromycin and clarithromycin were only partially degraded (20-35%). On the contrary, ciprofloxacin showed almost no removal. Despite the metabolic enhancement, no apparent increase on the antibiotic removal was observed throughout the operation, suggesting that microbiological composition was of greater influence than its primary metabolic activity on the removal of antibiotics.


Assuntos
Antibacterianos , Nitritos , Humanos , Nitritos/metabolismo , Anaerobiose , Antibacterianos/metabolismo , Metano/metabolismo , Oxirredução , Desnitrificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo
4.
Bioresour Technol ; 376: 128839, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906240

RESUMO

The study compares the potential to produce volatile fatty acids (VFA) from sewage sludge, both raw and thermally pre-treated in two modes of operation. In batch mode, raw sludge at pH 8 obtained the highest maximum VFA yield (0.41 g COD-VFA/g CODfed) whereas pre-treated sludge achieved a lower value (0.27 g COD-VFA/g CODfed). The operation of 5-L continuous reactors showed that thermal hydrolysis pre-treatment (THP) did not have any significant influence on VFA yields, averaging 15.1 % g COD-VFA/g COD with raw sludge and 16.6 % g COD-VFA/g COD with pre-treated one. Microbial community analysis showed that phylum Firmicutes was predominant in both reactors and that the enzymatic profiles involved in VFA production were very similar regardless of the substrate fed.


Assuntos
Microbiota , Esgotos , Fermentação , Hidrólise , Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio , Reatores Biológicos
5.
J Hazard Mater ; 442: 129983, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36193613

RESUMO

There is scarce information about the biotransformation of organic micropollutants (OMPs) under anoxic conditions. In this study, a heterotrophic denitrifying bioreactor was set up to study the fate of several OMPs from metabolic and microbiological points of view. Primary metabolic activity was increased by adding progressively higher nitrogen loading rates during the operation (from 0.075 to 0.4 g N-NO3- L-1 d-1), which resulted in an important shift in the microbial population from a specialized biomass to a more diverse community. Such a change provoked a significant increase in the removal efficiency of erythromycin (ERY), roxithromycin (ROX) and bisphenol-A (BPA), and some bacterial taxa, such as Rhodoplanes, were identified as possible indicators related to the biodegradation of these compounds. The increasing primary metabolic activity in the reactor did not enhance the OMP-specific removal rates, suggesting that the bacterial composition is more influential than cometabolism.


Assuntos
Roxitromicina , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Roxitromicina/metabolismo , Poluentes Químicos da Água/análise , Reatores Biológicos , Biotransformação , Nitrogênio/metabolismo , Bactérias/metabolismo
6.
Environ Sci Technol ; 56(18): 13152-13159, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36073795

RESUMO

The growing concern about antibiotic-resistant microorganisms has focused on the sludge from wastewater treatment plants (WWTPs) as a potential hotspot for their development and spread. To this end, it seems relevant to analyze the changes on the microbiota as a consequence of the antibiotics that wastewater may contain. This study aims at determining whether the presence of sulfamethoxazole (SMX), even in relatively low concentrations, modifies the microbial activities and the enzymatic expression of an activated sludge under aerobic heterotrophic conditions. For that purpose, we applied a metaproteomic approach in combination with genomic and transformation product analyses. SMX was biotransformed, and the metabolite 2,4(1H,3H)-pteridinedione-SMX (PtO-SMX) from the pterin-conjugation pathway was detected at all concentrations tested. Metaproteomics showed that SMX at 50-2000 µg/L slightly affected the microbial community structure, which was confirmed by DNA metabarcoding. Interestingly, an enhanced activity of the genus Corynebacterium and specifically of five enzymes involved in its central carbon metabolism was found at increased SMX concentrations. Our results suggest a role of Corynebacterium genus on SMX risks mitigation in our bioreactors.


Assuntos
Esgotos , Sulfametoxazol , Antibacterianos , Carbono , Pterinas , Esgotos/microbiologia , Sulfametoxazol/metabolismo , Águas Residuárias
7.
One Health ; 13: 100339, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34746357

RESUMO

BACKGROUND: A One Health approach requires integrative research to elucidate antimicrobial resistance (AMR) in the environment and the risks it poses to human health. Research on this topic involves experts from diverse backgrounds and professions. Shortcomings exist in terms of consistent, complete, and transparent reporting in many environmental studies. Standardized reporting will improve the quality of scientific papers, enable meta-analyses and enhance the communication among different experts. In this study, we aimed to generate a consensus of reporting standards for AMR research in wastewater and related aquatic environments. METHODS: Based on a risk of bias assessment of the literature in a systematic review, we proposed a set of study quality indicators. We then used a multistep modified Delphi consensus to develop the EMBRACE-WATERS statement (rEporting antiMicroBial ResistAnCE in WATERS), a checklist of recommendations for reporting in studies of AMR in wastewater and related aquatic environments. FINDINGS: Consensus was achieved among a multidisciplinary panel of twenty-one experts in three steps. The developed EMBRACE-WATERS statement incorporates 21 items. Each item contains essential elements of high-quality reporting and is followed by an explanation of their rationale and a reporting-example. The EMBRACE-WATERS statement is primarily intended to be used by investigators to ensure transparent and comprehensive reporting of their studies. It can also guide peer-reviewers and editors in evaluation of manuscripts on AMR in the aquatic environment. This statement is not intended to be used to guide investigators on the methodology of their research. INTERPRETATION: We are hopeful that this statement will improve the reporting quality of future studies of AMR in wastewater and related aquatic environments. Its uptake would generate a common language to be used among researchers from different disciplines, thus advancing the One Health approach towards understanding AMR spread across aquatic environments. Similar initiatives are needed in other areas of One Health research.

8.
Water Res ; 202: 117435, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34330027

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is shed in the feces of infected people. As a consequence, genomic RNA of the virus can be detected in wastewater. Although the presence of viral RNA does not inform on the infectivity of the virus, this presence of genetic material raised the question of the effectiveness of treatment processes in reducing the virus in wastewater and sludge. In this work, treatment lines of 16 wastewater treatment plants were monitored to evaluate the removal of SARS-CoV-2 RNA in raw, processed waters and sludge, from March to May 2020. Viral RNA copies were enumerated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in 5 different laboratories. These laboratories participated in proficiency testing scheme and their results demonstrated the reliability and comparability of the results obtained for each one. SARS-CoV-2 RNA was found in 50.5% of the 101 influent wastewater samples characterized. Positive results were detected more frequently in those regions with a COVID-19 incidence higher than 100 cases per 100,000 inhabitants. Wastewater treatment plants (WWTPs) significantly reduced the occurrence of virus RNA along the water treatment lines. Secondary treatment effluents showed an occurrence of SARS-CoV-2 RNA in 23.3% of the samples and no positive results were found after MBR and chlorination. Non-treated sludge (from primary and secondary treatments) presented a higher occurrence of SARS-CoV-2 RNA than the corresponding water samples, demonstrating the affinity of virus particles for solids. Furthermore, SARS-CoV-2 RNA was detected in treated sludge after thickening and anaerobic digestion, whereas viral RNA was completely eliminated from sludge only when thermal hydrolysis was applied. Finally, co-analysis of SARS-CoV-2 and F-specific RNA bacteriophages was done in the same water and sludge samples in order to investigate the potential use of these bacteriophages as indicators of SARS-CoV-2 fate and reduction along the wastewater treatment.


Assuntos
COVID-19 , Águas Residuárias , Humanos , RNA Viral , Reprodutibilidade dos Testes , SARS-CoV-2 , Esgotos
9.
Environ Sci Technol ; 55(9): 5939-5949, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886308

RESUMO

Urban wastewater systems (UWSs) are a main receptacle of excreted antibiotic resistance genes (ARGs) and their host microorganisms. However, we lack integrated and quantitative observations of the occurrence of ARGs in the UWS to characterize the sources and identify processes that contribute to their fate. We sampled the UWSs from three medium-size cities in Denmark, Spain, and the United Kingdom and quantified 70 clinically important extended-spectrum ß-lactamase and carbapenemase genes along with the mobile genetic elements and microbial communities. Results from all three countries showed that sewage-especially from hospitals-carried substantial loads of ARGs (106-107 copies per person equivalent), but these loads progressively declined along sewers and through sewage treatment plants, resulting in minimal emissions (101-104 copies per person equivalent). Removal was primarily during sewage conveyance (65 ± 36%) rather than within sewage treatment (34 ± 23%). The extended-spectrum ß-lactamase and carbapenemase genes were clustered in groups based on their persistence in the UWS compartments. The less-persistent groups were associated to putative host taxa (especially Enterobacteriaceae and Moraxellaceae), while the more persistent groups appeared horizontally transferred and correlated significantly with total cell numbers and mobile genetic elements. This documentation of a substantial ARG reduction during sewage conveyance provides opportunities for antibiotic resistance management and a caution for sewage-based antibiotic resistance surveillance.


Assuntos
Esgotos , beta-Lactamases , Antibacterianos , Proteínas de Bactérias , Genes Bacterianos , Espanha , Reino Unido , Águas Residuárias , beta-Lactamases/genética
10.
Sci Total Environ ; 772: 145268, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33556806

RESUMO

SARS-CoV-2 genetic material is detectable in the faeces of a considerable part of COVID-19 cases and hence, in municipal wastewater. This fact was confirmed early during the spread of the COVID-19 pandemic and prompted several studies that proposed monitoring its incidence by wastewater. This paper studies the fate of SARS-CoV-2 genetic material in wastewater treatment plants using RT-qPCR with a two-fold goal: i) to check its presence in the water effluent and in the produced sludge and ii) based on the understanding of the virus particles fate, to identify the most suitable spots for detecting the incidence of COVID-19 and monitor its evolution. On the grounds of the affinity of enveloped virus towards biosolids, we hypothesized that the sludge line acts as a concentrator of SARS-CoV-2 genetic material. Sampling several spots in primary, secondary and sludge treatment at the Ourense (Spain) WWTP in 5 different days showed that, in effect, most of SARS-CoV-2 particles cannot be detected in the water effluent as they are retained by the sludge line. We identified the sludge thickener as a suitable spot for detecting SARS-CoV-2 particles thanks to its higher solids concentration (more virus particles) and longer residence time (less sensitive to dilution caused by precipitation). These findings could be useful to develop a suitable strategy for early warning of COVID-19 incidence based on WWTP monitoring.


Assuntos
COVID-19 , Pandemias , Humanos , SARS-CoV-2 , Esgotos , Espanha , Águas Residuárias
11.
Syst Appl Microbiol ; 43(1): 126040, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31784208

RESUMO

Two Gram-negative strains obtained from tank water in a scallop hatchery in Norway, were phenotypically and genotypically characterized in order to clarify their taxonomic position. On the basis of 16S rRNA gene sequence analysis, these isolates, ATF 5.2T and ATF 5.4T, were included in the genus Halomonas, being their closest relatives H. smyrnensis and H. taeanensis, with similarities of 98.9% and 97.7%, respectively. Sequence analysis of the housekeeping genes atpA, ftsZ, gyrA, gyrB, mreB, rpoB, rpoD, rpoE, rpoH, rpoN and rpoS clearly differentiated the isolates from the currently described Halomonas species, and the phylogenetic analysis using concatenated sequences of these genes located them in two robust and independent branches. DNA-DNA hybridization (eDDH) percentage, together with average nucleotide identity (ANI), were calculated using the complete genome sequences of the strains, and demonstrate that the isolates constitute two new species of Halomonas, for which the names of Halomonas borealis sp. nov. and Halomonas niordiana sp. nov. are proposed, with type strains ATF 5.2T (=CECT 9780T=LMG 31367T) and ATF 5.4T (=CECT 9779T=LMG 31227T), respectively.


Assuntos
Halomonas/classificação , Água do Mar/microbiologia , Proteínas de Bactérias/genética , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Essenciais/genética , Genoma Bacteriano/genética , Halomonas/química , Halomonas/citologia , Halomonas/fisiologia , Noruega , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Ubiquinona/química
14.
Front Microbiol ; 9: 2077, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233547

RESUMO

Since the description of the genus Arcobacter in 1991, a total of 27 species have been described, although some species have shown 16S rRNA similarities below 95%, which is the cut-off that usually separates species that belong to different genera. The objective of the present study was to reassess the taxonomy of the genus Arcobacter using information derived from the core genome (286 genes), a Multilocus Sequence Analysis (MLSA) with 13 housekeeping genes, as well as different genomic indexes like Average Nucleotide Identity (ANI), in silico DNA-DNA hybridization (isDDH), Average Amino-acid Identity (AAI), Percentage of Conserved Proteins (POCPs), and Relative Synonymous Codon Usage (RSCU). The study included a total of 39 strains that represent all the 27 species included in the genus Arcobacter together with 13 strains that are potentially new species, and the analysis of 57 genomes. The different phylogenetic analyses showed that the Arcobacter species grouped into four clusters. In addition, A. lekithochrous and the candidatus species 'A. aquaticus' appeared, as did A. nitrofigilis, the type species of the genus, in separate branches. Furthermore, the genomic indices ANI and isDDH not only confirmed that all the species were well-defined, but also the coherence of the clusters. The AAI and POCP values showed intra-cluster ranges above the respective cut-off values of 60% and 50% described for species belonging to the same genus. Phenotypic analysis showed that certain test combinations could allow the differentiation of the four clusters and the three orphan species established by the phylogenetic and genomic analyses. The origin of the strains showed that each of the clusters embraced species recovered from a common or related environment. The results obtained enable the division of the current genus Arcobacter in at least seven different genera, for which the names Arcobacter, Aliiarcobacter gen. nov., Pseudoarcobacter gen. nov., Haloarcobacter gen. nov., Malacobacter gen. nov., Poseidonibacter gen. nov., and Candidate 'Arcomarinus' gen. nov. are proposed.

15.
Mol Phylogenet Evol ; 127: 513-521, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29751087

RESUMO

At present, the genus Edwardsiella compiles five species: E. tarda, E. hoshinae, E. ictaluri, E. piscicida and E. anguillarum. Some species of this genus such us E. ictaluri and E. piscicida are important pathogens of numerous fish species. With the description of the two latter species, the phylogeny of Edwardsiella became more complicated. With the aim to clarify the relationships among all species in the genus, a multilocus sequence typing (MLST) approach was developed and applied to characterize 56 isolates and 6 reference strains belonging to the five Edwardsiella species. Moreover, several analyses based on the MLST scheme were performed to investigate the evolution within the genus, as well as the influence of recombination and mutation in the speciation. Edwardsiella isolates presented a high genetic variability reflected in the fourteen sequence types (ST) represented by a single isolates out of eighteen total ST. Mutation events were considerably more frequent than recombination, although both approximately equal influenced the genetic diversification. However, the speciation among species occurred mostly by recombination. Edwardsiella genus displays a non-clonal population structure with some degree of geographical isolation followed by a population expansion of E. piscicida. A database from this study was created and hosted on pubmlst.org (http://pubmlst.org/edwardsiella/).


Assuntos
Edwardsiella/classificação , Edwardsiella/genética , Tipagem de Sequências Multilocus , Evolução Molecular , Fluxo Gênico , Mutação , Filogenia , Recombinação Genética
16.
Syst Appl Microbiol ; 41(1): 30-37, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29150173

RESUMO

Until 2012, the genus Edwardsiella was composed by three species Edwardsiella tarda, Edwardsiella hoshinae and Edwardsiella ictaluri. In 2013, Edwardsiella piscicida, compiling fish pathogenic strains previously identified as E. tarda was described, and more recently a new species isolated from diseased eel was reported, namely Edwardsiella anguillarum. The incorporation of these species into the genus makes necessary a revision of the taxonomic position of the isolates previously identified as E. tarda. Using AFLP technique, MLSA studies and in silico DNA-DNA hybridization, 46 of 49 E. tarda isolates were re-assigned as E. piscicida and 2 as E. anguillarum, whereas it was confirmed previous classification of the Edwardsiella types and reference strains used. The study of the taxonomic resolution of the genes 16S rRNA, adk, atpD, dnaJ, glnA, hsp60, tuf as well as the possible combinations among housekeeping genes, showed that the gene dnaJ was the more resolutive. In conclusion, the use of molecular techniques is necessary to accurately identify Edwardsiella isolates, especially when differentiating new species from E. tarda.


Assuntos
Edwardsiella/classificação , Edwardsiella/isolamento & purificação , Peixes/microbiologia , Filogenia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Edwardsiella/genética , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Microbiologyopen ; 6(6)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28925024

RESUMO

Five strains were isolated from gonad of Great scallop (Pecten maximus) broodstock in a Norwegian hatchery. The study of 16S rRNA gene sequences showed that these isolates belong to Neptunomonas phycophila, a bacterium originally isolated from a symbiont of the anemone Aiptasia tagetes from Puerto Rico. The gyrB and rpoB genes sequences confirmed the affiliation of the scallop isolates to this species. Phenotypic characterization was performed and some differences between the Norwegian isolates and the type strain of N. phycophila were detected, such as ranges of temperature, pH, and tolerance to salinity or the use of several substrates as sole carbon source which lead to an emended description of the species. The strain 3CM2.5 showed phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids. The whole genomes of the scallop strain 3CM2.5 and type strain of the species CECT 8716T were obtained and the annotation of these genomes revealed the presence of genes involved in degradation of aromatic compounds in both strains. Results obtained not only widen the geographical and host ranges of N. phycophila, but also point out possible biotechnological applications for this bacterial species.


Assuntos
Oceanospirillaceae/isolamento & purificação , Pectinidae/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Biotecnologia , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Genoma Bacteriano , Gônadas/microbiologia , Noruega , Oceanospirillaceae/classificação , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Pectinidae/crescimento & desenvolvimento , Fosfatidiletanolaminas/metabolismo , Filogenia
19.
Dis Aquat Organ ; 125(3): 189-197, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792417

RESUMO

So-called 'cleaner fish', including various wrasse (Labridae) species, have become increasingly popular in Norwegian salmon farming in recent years for biocontrol of the salmon louse Lepeophtheirus salmonis. Cleaner fish mortalities in salmon farms are, however, often high. Various bacterial agents are frequently associated with episodes of increased cleaner fish mortality, and Vibrio tapetis is regularly cultured from diseased wrasse. In the present study, we investigated the genetic relationships among 54 V. tapetis isolates (34 from wrasse species) by multilocus sequence analysis (MLSA; rpoD, ftsZ, pyrH, rpoA and atpA). In the resulting phylogenetic tree, all wrasse isolates belonged to sub-clusters within V. tapetis subsp. tapetis. Slide agglutination testing further confirmed the complete dominance amongst these isolates of 4 O-antigen serotypes, designated here as V. tapetis subsp. tapetis serotypes O1, O3, O4 and O5, respectively. A pilot challenge trial using serotypes O3, O4 and O5 did not indicate high pathogenicity towards ballan wrasse Labrus bergylta, thus questioning the role of V. tapetis as a primary pathogen of this fish species.


Assuntos
Agentes de Controle Biológico , Copépodes/microbiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Vibrio/genética , Vibrio/isolamento & purificação , Animais , Ectoparasitoses/prevenção & controle , Doenças dos Peixes/prevenção & controle , Peixes , Filogenia , Projetos Piloto
20.
Syst Appl Microbiol ; 40(2): 80-85, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28040300

RESUMO

Nine isolates obtained from a great scallop hatchery in Norway were characterized using a polyphasic approach. Strains were Gram-negative, aerobic and motile rods with oxidative metabolism. Phylogenetic analysis based on the sequences of 16S rRNA and rpoB genes showed that these strains formed two different groups associated with members of the genus Neptuniibacter. DNA-DNA hybridization (DDH) and Average Nucleotide Identity (ANI) demonstrated that the isolates constituted two novel species of this genus, which can be phenotypically differentiated from their closest relatives. The names Neptuniibacter marinus sp. nov. and Neptuniibacter pectenicola sp. nov are proposed, with ATR 1.1T (=CECT 8938T=DSM 100783T) and LFT 1.8T (=CECT 8936T=DSM 100781T) as respective type strains.


Assuntos
Oceanospirillaceae/classificação , Oceanospirillaceae/isolamento & purificação , Pecten/microbiologia , Aerobiose , Animais , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA/genética , Locomoção , Noruega , Hibridização de Ácido Nucleico , Oceanospirillaceae/genética , Oceanospirillaceae/fisiologia , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...